Concave Quadratic Cuts for Mixed-Integer Quadratic Problems

نویسندگان

  • Jaehyun Park
  • Stephen Boyd
چکیده

The technique of semidefinite programming (SDP) relaxation can be used to obtain a nontrivial bound on the optimal value of a nonconvex quadratically constrained quadratic program (QCQP). We explore concave quadratic inequalities that hold for any vector in the integer lattice Z, and show that adding these inequalities to a mixed-integer nonconvex QCQP can improve the SDP-based bound on the optimal value. This scheme is tested using several numerical problem instances of the max-cut problem and the integer least squares problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand...

متن کامل

Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...

متن کامل

Complete Solutions to Mixed Integer Programming

This paper considers a new canonical duality theory for solving mixed integer quadratic programming problem. It shows that this well-known NP-hard problem can be converted into concave maximization dual problems without duality gap. And the dual problems can be solved, under certain conditions, by polynomial algorithms.

متن کامل

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe two algorithms that find an -approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithms is polynomial in the size of the problem and in 1/ , provided ...

متن کامل

Improved quadratic cuts for convex mixed-integer nonlinear programs

This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015